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1.0 Introduction
This report details the use and installation of PVMPI 2.0 at the CEWES MSRC site. The first
part of report details the PVMPI system and it's rational. The second section details specifics of
this project to CEWES MSRC users and the future direction of this effort.

2.0 Technical Background
2.1 PVMPI Project Overview
Presently, different vendors' MPI implementations cannot inter-operate directly with each other.
As a result, performance of distributed computing across different vendors' machines requires
use of a single MPI implementation, such as MPICH. This solution may be sub-optimal since it
cannot utilize the vendors' own optimized MPI implementations.

PVMPI , a software package currently under development at the University of Tennessee,
provides the needed inter-operability between different vendors' optimized MPI
implementations. As the name suggests PVMPI  is a powerful combination of the proven and
widely ported Parallel Virtual Machine (PVM) system and MPI. Two important features of



PVMPI  are its transparent nature and its flexibility. PVMPI  is transparent to MPI applications
thus allowing intercommunication via all the MPI point-to-point calls. Additionally, PVMPI
allows flexible control over MPI applications by providing access to all the process control and
resource control functions available in the PVM virtual machine.

2.2 Message Passing Systems
The past several years have seen numerous efforts to address the deficiencies of the different
message passing systems and to introduce a single standard for such systems. These efforts
culminated in the first Message Passing Interface (MPI) standard, introduced in June 1994 [15].

Within a year, various implementations of MPI were available, including both commercial and
public domain systems. One of MPI's prime goals was to produce a system that would allow
manufacturers of high-performance massively parallel processing (MPP) computers to provide
highly optimized and efficient implementations.

In contrast, systems such as PVM [1] were designed for clusters of computers, with the primary
goals of portability, and ease-of-use. These have been achieved with little loss of performance
[4] and with greater flexibility than the native communications system.

The aim of PVMPI  was to interface the flexible process and virtual machine control from the
PVM system with several optimized MPI communication systems thus allowing MPI
applications the ability to inter-operate transparently across multiple heterogeneous hosts.

2.3 Virtual Machine Resource and Process Control
The PVM virtual machine is defined to be a dynamic collection of parallel and serial hosts. With
the exception of one host in the PVM virtual machine, any number of hosts can join, leave, or
fail without affecting the rest of the virtual machine. In addition, the PVM resource control API
allows the user to add or delete hosts, check that a host is responding, shut down the virtual
machine or be notified by a user-level message that a host has been added or deleted
(intentionally or not).

The PVM virtual machine is very flexible in its process control capabilities. It can start serial, or
parallel processes that may or may not be PVM applications. For example, PVM can spawn an
MPI application as easily as it can spawn a PVM application. The PVM process control API
allows any process to join or leave the virtual machine, start new processes by using a number of
different selection criteria (including external schedulers, resource managers and/or taskers),
signal or kill a process, test to check that a process is responding, and notify an arbitrary process
if another disconnects from the PVM system.

In addition to the above virtual machine control functions, PVM provides plug-in interfaces for
expanding its resource and process control capabilities. This extendibility has encouraged many
projects to use PVM in different distributed computing environments such as Mist [14],
dedicated schedulers [10], load balancers and process migration tools [5][16].



2.4 PVM Group Services
PVM provides the ability to group processes within the virtual machine. Groups are identified by
a character string name. Processes can join and leave any number of groups at any time, thus
making group membership completely dynamic. Processes are allocated instance numbers when
they join a group, in the order of membership. The first join operation creates the group, and the
group is destroyed when the membership falls to zero. Groups may have gaps in their
membership as processes leave out of order. To improve performance, PVM allows group
membership to be frozen by caching group details locally. Fully dynamic group caching is also
available [11][12]. Many users only use the PVM group functions as a convenient
naming/binding service.

2.5 MPI Communicators
Although the MPI standard does not specify how processes are started, it does dictate how MPI
processes enroll into the MPI system. All MPI processes join the MPI system by calling
MPI_Init and leave it by calling MPI_Finalize. Calling MPI_Init twice causes undefined
behavior. Processes in MPI are arranged in rank order, from 0 to N-1, where N is the number of
processes in a group. These process groups define the scope for all collective operations within
that group. Communicators consist of a process group, context, topology information and local
attribute caching. All MPI communications can only occur within a communicator.

Once all the expected MPI processes have started a common communicator is created by the
system called MPI_COMM_WORLD. Communications between processes within the same
communicator or group are referred to as intra-communicator communications. Communications
between disjoint groups are inter-communicator communications. The formation of an inter-
communicator requires two separate (non-overlapping) groups and a common communicator
between the leaders of each group, as shown in Figure 1.

Figure 1. Inter-communicator formed inside a single MPI_COMM_WORLD



The MPI-1 standard does not provide a way to create an inter-communicator between two
separately initiated MPI applications since no global communicator exists between them. The
scope of each application is limited by its own MPI_COMM_WORLD, which by its nature is
distinct from any other applications' MPI_COMM_WORLD. Since all internal details are hidden
from the user and MPI communicators have relevance only within a particular run-time instance,
MPI-1 implementations cannot inter-operate.

2.6 Related Work to PVMPI
Although several MPI implementations are built upon other established message-passing
libraries such as Chameleon-based MPICH [7], LAM [3] and Unify [6], none allow true inter-
operation between separate MPI applications across different MPI implementations.

LAM 6.X does allow some limited interaction between LAM only applications using a subset of
functions from the dynamic process chapter of the proposed MPI-2 standards document.

Unify was originally proposed to unify or mate together the PVM and new MPI APIs. The
intention was to enable users to take current PVM applications and slowly migrate toward
complete MPI applications, without having to make the complete conceptual jump from one
system to the other. The project never reached full maturity although it did address the difficulty
of mapping identifiers between the PVM and MPI domains which it solved using additional
function calls.

The only project known to the authors that attempts to directly interconnect MPI applications in
a way similar to PVMPI  is currently under way at the Computer Center of the University of
Stuttgart in Germany (Rechenzentrum Universitaet Stuttgart). This project attempts to
interconnect pairs of MPPs via specialist processes that use standard TCP/IP for
communications. More on this project and the newly developed Nexus-MPI project [21] will be
discussed in section 5.

3.0 PVMPI / MPI Connect project
3.1 The PVMPI System
We developed a prototype system PVMPI2  [9] to study the issues of interconnecting MPI and
PVM.

Four separate issues were addressed:

• mapping identifiers and managing MPI and PVM IDs

• transparent MPI message passing

• start-up facilities and process management

• performance effects



3.1.1 Mapping Identifiers

A tuple pair {process group, rank} or {communicator, rank} identifies a process in an MPI
application. PVM provides similar functionality through use of the group library. The PVM tuple
is {group name, instance}. PVMPI  provides address mapping from the MPI tuple space to the
PVM tuple space and vice versa. An initial prototype version of PVMPI [8] used such a system
without any further translation (or hiding of mixed identifiers). The association of this tuple pair
is achieved by registering each MPI process into a PVM group by a user level function call. A
matching unassociate or leave call is also provided. The functions are available in both C and
Fortran bindings:

info = PVMPI_Register(char *group, MPI_Comm comm, int *handle);

info = PVMPI_Leave(char *group);

call pvmpi_register( group, comm, handle, info )

call pvmpi_leave ( group, info )

Both register and leave functions are collective and blocking: all processes in the specified MPI
communicator have to participate. The PVMPI_Leave command is used to clean up MPI data
structures and to leave the PVM system in an orderly way if required. Processes can register in
multiple groups, although currently separate applications cannot register into a single group with
this call (i.e. take the same named group). The register call takes each member of the
communicator and makes it join a named PVM group so that its instance number within that
group matches its MPI rank.

Since any two MPI applications may be executing on different systems using different
implementations of MPI (or even different instances of the same version), the communicator
usually has no meaning outside of any application callable library. The PVM group server,
however, can be used to resolve identity when the group's names are unique. Once the
application has registered, an external process can access it by using that process' group name
and instance via the library calls pvm_gettid() and pvm_getinst(). When the groups have been
fully formed, they are frozen and all their details are cached locally to reduce system overhead.

3.1.2 Transparent Messaging

The mixing of MPI and PVM group calls requires the understanding of two different message
passing systems, their APIs, semantics and data formats. A better solution is to transparently
provide inter-operability of MPI application by utilizing only the MPI API. As previously stated
MPI uses communicators to identify message universes, and not PVM group names or TIDs.
Thus the PVMPI  could not allow users to utilize the original MPI calls for inter-application
communication.

The solution was to allow the creation of virtual communicators that map either onto PVM and
hence remote applications or onto real MPI intra-communicators for local communication. In
order to provide transparency and handle all possible uses of communicators, all MPI routines
using communicators were implemented using MPI’s profiling interface. This interface allows
user library calls to be intercepted on a selective bases so that debugging and profiling tools can



be linked into applications without any source code changes. Creating dual role communicators
within MPI would require altering MPI’s low level structure. As this was not feasible, an
alternative approach was taken. PVMPI  maintains its own concept of a communicator using a
hash table to store the actual communication parameters. As communicators in MPI are opaque
data structures this behavior has no impact on end user code. Thus PVMPI  communicator usage
is completely transparent as shown in Figure 2.

MPI Library

MPI Profiling Library

PVM Library

Look up comm
  if comm is MPI then
    call PMPI_Funct with real MPI comm

else

    look up remote process address
    call PVM using remote address

Return correct status/error code

PVMPI Library
MPI_Funct (MPI comm)

MPI_Funct ( MPI comm)
Normal MPI Calling Sequence

Figure 2. PVMPI usage of the MPI profiling interface to translate communicators.

Intra and inter communicator communications within a single application
(MPI_COMM_WORLD) proceeds as normal, while inter-application communications proceed
by the use of a PVMPI  inter-communicator formed by using the PVMPI_Intercomm_create
function:

info = PVMPI_Intercomm_create (int handle, char *gname, MPI_Comm *intercom);

call pvmpi_intercomm_create (handle, gname, intercom, info)

This function is almost identical to the normal MPI inter-communicator create call except that it
takes a handle from the register function instead of a communicator to identify the local group,
and a registered name for the remote group. The handle is used to differentiate between local
groups registered under multiple names.

The default call is blocking and collective, although a non-blocking version has been
implemented that can time-out or warn if the requested remote group has attempted to start and



then failed, so that appropriate action can be taken to aid fault tolerance.

PVMPI  inter-communicators are freed using the typical MPI function calls. They can be formed,
destroyed and recreated without restriction. Once formed, they can be used exactly the same as a
normal MPI inter-communicator except in the present version of PVMPI  there is a restriction
that they cannot be used in the formation of any new communicators. PVMPI  inter-
communicators allow the full range of point-to-point message passing calls inside MPI. Also
supported are a number of data formatting and (un) packing options, including user derived data
types (i.e. mixed striding and formats). Receive operations across inter-communicators relies
upon adequate buffering at the receiving end, in-line with normal PVM operation.

3.1.3 Low-level Start-up Facilities

The spawning of MPI jobs from PVM requires different procedures depending upon the target
system and the MPI implementation involved. The situation is complicated by the desire to avoid
adding many additional spawn calls (the current intention of the MPI-2 forum). Instead, a
number of different MPI implementation specific taskers have been developed that intercept the
internal PVM spawn messages and then correctly initiate the MPI applications as required.

3.1.4 Process Management under a General Resource Manager

The PVM GRM [10] can be used with specialized PVMPI  taskers to manage MPI applications
in an efficient and simple manner. This provides improved performance [13] and better
flexibility than that of a simple host file utilized by most MPIRUN systems. When a user's spawn
request is issued it is intercepted by the GRM and an attempt is made to optimize the placement
of tasks upon available hosts. If the placement is specialized then appropriate taskers are used.
Figure 3 shows a system with three clusters of machines: one each for MPICH, LAM and
general-purpose jobs. In this figure the start request causes two MPICH nodes to be selected by
the GRM, then the MPICH tasker starts the actual processes.

Figure 3. GRM and Tasker interaction.



Figure 4 Internal details of the PVM GRM system.



3.1.5 Performance Effects

The performance effects of PVMPI  were measured in two different areas:

• single MPI implementation instances / Intra-communication

• across MPI implementations instances / Inter-communication

Intra-communication performance was taken as the performance (or performance loss to/) of a
normal MPI application that did not attempt any external communication outside of any
particular MPI implementation instance, i.e., a stand-alone application running purely under just
LAM, MPICH or IBM's native MPI etc.

This was found to un-measurable accurately on a workstation cluster connected with 100Mb/s
Ethernet. Specific tests on CEWES MSRC MPPs are on going, although for operations on the
SGI O2000s a slight performance loss was found for small messages as expected. This is shown
in Figure 5 below.

Figure 5. Bandwidth calculated from the roundtrip time between two processors
on separate nodes of the CEWES MSRC O2000 machine.



Slight overhead from looking up communicators and passing the calls to the MPI profiling
interface is shown in Figure 5 for small messages (typical < 1KB). The benchmark software used
was MPBENCH from the University of Tennessee, which was developed as part of the
Performance Evaluation Program.

Inter-communication performance is considered communication between different
MPI implementation instances, whether running upon different hardware systems or just
independently started implementations upon the same platform.

Initial tests have shown typical PVM communication speeds (latency and bandwidth) depending
upon the inter-connection media and type of communication.

4.0 Current Work
4.1 Running PVMPI under CEWES MSRC systems
This has been attempted in several stages. Initially the PVMPI  system used an older version of
PVM (3.3.8), which had been modified to allow enhanced control over the PVM taskers than
was provided with the default public domain version. Since then, the PVMPI  system has been
upgraded to use PVM 3.4, which provides better naming services and user definable message
communication contexts. PVM 3.4 has been installed with a base version of PVMPI  on the
CEWES MSRC SGI PCAs, O2000s and SP systems.

4.1.1 SGI O2000 and PCAs

PVMPI  was ported successfully to the SGI version of MPI on the PCA and O2000 systems.
Only minor changes were necessary to allow PVMPI  to correctly interact with SGI's version of
MPI. These changes coupled with the ease of running a PVMD on the same machine as an
MPI application have produced the simplest port.

4.1.2 IBM SP

PVMPI was ported and installed on the SP system, which presented a few conversion problems
initially. This port has now been updated and is running correctly.

Two separate restrictions were found:

(1) The version of PVM used on the SP nodes is the workstation version configured to use
the high speed switch (when available), and not the SP2MPI version. Under the normal
partition management software, in this case IBM's POE, PVM daemons could only be started
on the interactive nodes. (This was also found to be a problem at other DoD MSRC sites).

(2) In the case of CEWES MSRC, the IBM POE system has to be invoked via the PBS job
control system (PBS-POE). This has the problem that after setting up the PVM Virtual
Machine (running a daemon on each node where the MPI applications will execute), the PBS
system kills all other user processes when starting the MPI application, i.e., removing the
underlying PVM virtual machine and thus disallowing the MPI application from inter-
operating with other machines. Currently we can only test one node at a time, which is



sufficient for testing inter-machine communication at CEWES MSRC, with full SP testing
occurring at the Aeronautical Systems Center MSRC.

Other than changing the runtime system, the solution is to remove the restriction of having every
MPI node have its own PVM daemon available. In this case, native messaging is used to pass
external messages to an additional MPI process that acts as an external gateway. This is
explained further in section 5.

4.1.3 Cray T3E

The Cray T3E presents a different problem. Although there is a version of PVM available for the
T3E, it is the VENDOR version and does not inter-operate with the public domain version of
PVM from ORNL.

There is however a solution in that it's possible to utilize TCP sockets directly on any node and
then send/receive messages by utilizing these sockets. To reduce complexity, normal
MPI communications can efficiently pass external messages to additional MPI processes that
handle these external messages via their own TCP stacks. This is the solution being used by a
package called PACX from the Stuttgart Computer Center in Germany that allows only T3Es to
inter-operate. A similar solution is being developed that also solves the IBM SP problems
indicated above.

Currently, no interoperation is possible between the T3E and different vendor machines until the
listed modifications to PVMPI  have been completed.

4.2 Runtime systems / Job Control / Q-Sub / PBS-POE
The runtime systems have difficulties in allowing both PVM and MPI to co-exist in some
systems, even when appropriate changes have been made to the GRM system to allow a single
point for job control. As the new version of PVMPI  comes on line, these problems will
diminish.

4.3 Other Support Systems

4.3.1 PVM 3.4b

The latest version of PVM, PVM 3.4b, was installed on all applicable hardware at CEWES
MSRC (IBM SP and SGI PCA/O2000). This version of PVM has internal message contexts,
which improves PVM's ability to handle multiple communications in a safer manner. This has
allowed the use of PVMPI  with simpler message routing/handling overheads since it does not
have to partly unpack messages to determine routing requirements.



5.0 Future Work
5.1 New Architecture Support
Supporting the current IBM SP systems requires a change in structure of the PVMPI  system,
which can be combined with the changes required to support PVMPI  for other architectures such
as the Cray T3E and the Intel Paragon XP series machines.

The changes basically require the routing and encoding used by external (in) bound messages to
use additional processes that have external access, instead of assuming all nodes can access
PVM which provides all external access. All internal messaging to these nodes will use the
vendor optimized MPI communications. In the case of the Cray T3E and Intel Paragon XP
machines, these communication nodes will not have access to PVM and thus will be forced to
utilize a different inter-machine communication medium such as SNIPE [19]. SNIPE uses either
TCP/IP or the NEXUS [21] communications library from Globus [20]. SNIPE provides its name
resolution service via the Resource Catalogue and Distribution Service (RCDS) [22], which
replaces PVM’s group server PVMGS. Figures 6a-6d show the different communication layouts
and process placements involved for each of the different architectures.

Figure 6a. All MPI processes have access to their own PVMD.



Figure 6b. MPI processes have to share a PVM daemon but can access the PVM API directly.

Figure 6c. Only a few MPI processes can access a PVM daemon directly. Thus external
communication must be relayed to these processes for additional routing.



Figure 6d. Interconnecting MPPs using SNIPE instead of PVM to avoid possible
problems maintaining PVM daemon processes.

5.2 Different Programming Models
The current programming model is based upon the idea of two or more distinct applications
inter-operating via the normal MPI API. Their organization may be of a traditional peer-to-peer
or client-server model. The PVMPI  system itself does not inflict any addition control over the
applications and it is entirely up to the application developer to add additional control structures
to alter the programming model.

With the restructuring of the code, it is possible through the capturing of all the MPI API to
allow the two separate applications to interact as if they were a single application. For example,
the programmer would no longer need to register applications under names and then create
communicators between them. For some applications this would be an advantage and a more
natural method of structuring.

The only disadvantage for the system's side of the software is that all the collective and topology
functions in MPI would now have to be supported. This has been a hindrance in other projects
similar to PVMPI  such as PACX [2][23], which up to now only support a limited set of
functions that are required by the specific applications it was developed to support.



5.3 Enhancements
One of PVMPI/MPI_Connects advantages is that it fully supports user derived data types. This
can be extended with some of the MPI-2 parallel IO features to allow two separate applications
to exchange and archive data in an efficient and portable manner. Currently the MPI-2
specification does not indicate how different MPI implementations would create joint files when
using the parallel interface. We hope to provide some support for this so that when a single
application is executed across multiple platforms, the parallel IO continues seamlessly.

Using relay processes also provides a useful single point for all external communications and
thus allows:

• Encryption of messages. Useful between compute servers running at MSRC sites talking
to clients at off-site.

• Compression of communication. When passing large data messages over low-bandwidth
connections this can reduce the period of synchronous/collective operations.

5.4 User Applications
As part of our program to support CEWES MSRC users we aim to assist the year three focused
effort on “Climate, Weather, Ocean Modeling Simulation” in association with Ohio State
University. This project aims at parallelizing and coupling the WAM wave model with the
CH3D circulation model. In its later stages, the NCAR MM5 atmospheric model and
COSED sediment models will also be integrated. The project is an ideal candidate as all four
models have slightly different computational and communication requirements and therefore are
suited to different hardware platforms. Currently most models are coupled by sharing data files
on shared file systems. Prof. Keith Bedford is leading this project from Ohio State University.

5.5 Across MSRC Site Operation
With the transfer from PVM to non-virtual machine based communications and name resolution,
it becomes more feasible to extend operation across MSRC sites. Thus, users may start an
application that runs in part, on different machines at each of the MSRC sites, allowing a much
larger problem size to be solved.

6.0 Conclusions
The PVMPI system solves the lack of interoperability between MPI-1 implementations. It allows
the user to run applications across different hardware systems while still utilizing the vendors'
optimized MPI implementations on each system. PVMPI usage is transparent to the end user and
its usage requires only three additional calls (PVMPI_register, PVMPI_leave  and
PVMPI_Intercom_create ). Additionally, it provides flexible process management and assists in
efficient use of networked resources.
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